rms

Root Mean Square (RMS) of array elements.

📝 Syntax

  • y = rms(x)

  • y = rms(x, dim)

  • y = rms(x, vecdim)

  • y = rms(x, 'all')

  • y = rms(x, dim, type)

  • y = rms(x, 'all', type)

  • y = rms(x, dim, type, nanflag)

  • y = rms(x, 'all', type, nanflag)

📥 Input argument

  • x - Input array, specified as a vector, matrix, or multidimensional array: single, double, logical, integer types

  • dim - Dimension to operate along, specified as a positive integer scalar.

  • 'all' - Operate on all elements of x, returning the RMS value of all elements.

  • type - Data type to use in the computation: 'double', 'native'

  • nanflag - Missing value condition, specified as: 'includenan', 'includemissing', 'omitnan', 'omitmissing'

📤 Output argument

  • y - Root mean square value(s), returned as a scalar, vector, or array.

📄 Description

rms returns the root mean square (RMS) value of the input array elements.

  • If x is a vector, y is a scalar.

  • If x is a matrix, y is a row vector containing the RMS value for each column (default).

  • If x is a multidimensional array, y contains the RMS values computed along the first array dimension whose size does not equal 1, unless another dimension is specified.

The root mean square value of an array x is: RMS(x)=1Nn=1Nxn2\mathrm{RMS}(x) = \sqrt{ \frac{1}{N} \sum_{n=1}^{N} |x_n|^2 } where the summation is performed along the specified dimension(s), and N is the number of elements along those dimensions.

NaN Handling: By default, NaN values are included. Use 'omitnan' or 'omitmissing' to ignore NaNs.

Type Handling: If type is 'native', the computation and output use the same class as the input (e.g., integer input returns integer output).

💡 Examples

RMS Value of Vector

RMS Values of Matrix Columns

RMS Values of Matrix Rows

RMS Excluding Missing Values

RMS with Integer Input and Native Output

🔗 See also

conv, max, min.

🕔 History

Version
📄 Description

1.16.0

initial version

Last updated

Was this helpful?