bdschur
Block-diagonal Schur factorization.
📝 Syntax
[T, B] = bdschur(A)
[T, B] = bdschur(A, CONDMAX)
📥 Input argument
A - Square real matrix.
CONDMAX - upper bound on the condition number of T. By default, CONDMAX = 1e4.
📤 Output argument
T - Transformation matrix.
B - B = T \ A * T
📄 Description
[T, B] = bdschur(A, CONDMAX) calculates a transformation matrixT, whereB = T \ A * T results in a block diagonal matrix with each block being a quasi upper-triangular Schur matrix, ensuring the diagonalization of matrix A while preserving certain structural properties.
Used function(s)
MB03RD
📚 Bibliography
http://slicot.org/objects/software/shared/doc/MB03RD.html
💡 Example
A = [1. -1. 1. 2. 3. 1. 2. 3.;
1. 1. 3. 4. 2. 3. 4. 2.;
0. 0. 1. -1. 1. 5. 4. 1.;
0. 0. 0. 1. -1. 3. 1. 2.;
0. 0. 0. 1. 1. 2. 3. -1.;
0. 0. 0. 0. 0. 1. 5. 1.;
0. 0. 0. 0. 0. 0. 0.99999999 -0.99999999;
0. 0. 0. 0. 0. 0. 0.99999999 0.99999999];
[T, B] = bdschur(A)
🔗 See also
🕔 History
Version
📄 Description
1.0.0
initial version
Last updated
Was this helpful?