kron

Kronecker tensor product.

📝 Syntax

  • K = kron(A, B)

📥 Input argument

  • A - a matrix: scalars, vectors or matrices.

  • B - a matrix: scalars, vectors or matrices.

📤 Output argument

  • K - result: Kronecker Tensor Product.

📄 Description

K = kron(A, B) computes the Kronecker tensor product of matrices A and B.

For matrices AA

of size m×nm \times n

and BB

of size p×qp \times q

, the Kronecker product is: AB=(a11Ba12Ba1nBa21Ba22Ba2nBam1Bam2BamnB)A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}

The result is an mp×nqmp \times nq

matrix.

📚 Bibliography

https://en.wikipedia.org/wiki/Kronecker_product

💡 Example

A = [1, 2; 3, 4];
B = [0, 5; 6, 7];
K = kron(A, B)

🔗 See also

cross, hankel.

🕔 History

Version
📄 Description

1.0.0

initial version

Last updated

Was this helpful?