slicot_tb01id
Équilibrage d'une matrice système correspondant au triplet (A, B, C).
📝 Syntaxe
[MAXRED_OUT, A_OUT, B_OUT, C_OUT, SCALE, INFO] = slicot_tb01id(JOB, MAXRED_IN, A_IN, B_IN, C_IN)
📥 Argument d'entrée
JOB - = 'A': Toutes les matrices sont impliquées dans l'équilibrage ; = 'B': Les matrices B et A sont impliquées ; = 'C': Les matrices C et A sont impliquées ; = 'N': Les matrices B et C ne sont pas impliquées dans l'équilibrage.
MAXRED_IN - la réduction maximale autorisée de la norme 1 de S (dans une itération) si des lignes ou colonnes nulles sont rencontrées.
A_IN - La partie principale N-by-N de ce tableau doit contenir la matrice d'état du système A.
B_IN - La partie principale N-by-M de ce tableau doit contenir la matrice d'entrée du système B.
C_IN - La partie principale P-by-N de ce tableau doit contenir la matrice de sortie du système C.
📤 Argument de sortie
MAXRED_OUT - si la norme 1 de la matrice donnée S est non nulle, le ratio entre la norme 1 de la matrice donnée et la norme 1 de la matrice équilibrée.
A_OUT - La partie principale N-by-N de ce tableau contient la matrice équilibrée inv(D)*A*D.
B_OUT - La partie principale N-by-M de ce tableau contient la matrice équilibrée inv(D)*B.
C_OUT - La partie principale P-by-N de ce tableau contient la matrice équilibrée C*D.
SCALE - Les facteurs d'échelle appliqués à S.
INFO - = 0 : sortie réussie.
đź“„ Description
Réduire la norme 1 d'une matrice système correspondant au triplet (A, B, C), par équilibrage.
Fonction(s) utilisée(s)
TB01ID
📚 Bibliographie
http://slicot.org/objects/software/shared/doc/TB01ID.html
đź’ˇ Exemple
đź•” Historique
1.0.0
version initiale
Last updated
Was this helpful?