bdschur
Block-diagonal Schur factorization.
📝 Syntax
- [T, B] = bdschur(A) 
- [T, B] = bdschur(A, CONDMAX) 
📥 Input argument
- A - Square real matrix. 
- CONDMAX - upper bound on the condition number of T. By default, CONDMAX = 1e4. 
📤 Output argument
- T - Transformation matrix. 
- B - B = T \ A * T 
📄 Description
[T, B] = bdschur(A, CONDMAX) calculates a transformation matrix T, where B = T \ A * T results in a block diagonal matrix with each block being a quasi upper-triangular Schur matrix, ensuring the diagonalization of matrix A while preserving certain structural properties.
Used function(s)
MB03RD
📚 Bibliography
http://slicot.org/objects/software/shared/doc/MB03RD.html
💡 Example
A = [1.   -1.    1.    2.    3.    1.    2.    3.;
   1.    1.    3.    4.    2.    3.    4.    2.;
   0.    0.    1.   -1.    1.    5.    4.    1.;
   0.    0.    0.    1.   -1.    3.    1.    2.;
   0.    0.    0.    1.    1.    2.    3.   -1.;
   0.    0.    0.    0.    0.    1.    5.    1.;
   0.    0.    0.    0.    0.    0.    0.99999999   -0.99999999;
   0.    0.    0.    0.    0.    0.    0.99999999    0.99999999];
[T, B] = bdschur(A)
🔗 See also
🕔 History
Version
📄 Description
1.0.0
initial version
Last updated
Was this helpful?
