minreal

Réalisation minimale ou annulation pôle‑zéro.

📝 Syntaxe

  • [Am, Bm, Cm, Dm] = minreal(A, B, C, D)

  • [Am, Bm, Cm, Dm] = minreal(A, B, C, D, tol)

  • sysOut = minreal(sysIn)

  • sysOut = minreal(sysIn, tol)

📥 Argument d'entrée

  • A (n x n) - ReprĂ©sente la matrice de transition d'Ă©tat du système. Elle dĂ©crit comment l'Ă©tat interne du système Ă©volue dans le temps.

  • B (n x m) - DĂ©crit la correspondance entrĂ©e-Ă©tat. Elle montre comment les entrĂ©es de contrĂ´le affectent le changement de l'Ă©tat du système.

  • C (p x n) - ReprĂ©sente la correspondance Ă©tat-sortie. Elle montre comment les variables d'Ă©tat du système sont liĂ©es aux sorties du système.

  • D (p x m) - DĂ©crit le passage direct des entrĂ©es aux sorties. Dans de nombreux systèmes, cette matrice est nulle car il n'y a pas de passage direct.

  • tol - scalaire rĂ©el (tolĂ©rance).

  • sysIn - Modèle LTI.

📤 Argument de sortie

  • Am, Bm, Cm, Dm - une rĂ©alisation minimale du système d'Ă©tat A, B, C, D.

  • sysOut - une rĂ©alisation minimale de l'entrĂ©e LTI.

đź“„ Description

minreal réduit les modèles d'état en éliminant les états non contrôlables ou non observables.

Dans les fonctions de transfert ou modèles zéro‑pôle‑gain, il annule les paires pôles‑zéros. Le modèle résultant maintient les mêmes caractéristiques de réponse que le modèle original mais avec un ordre minimal.

Lorsque vous utilisezsysOut = minreal(sysIn, tol), vous pouvez personnaliser la tolérance pour l'élimination des états ou l'annulation des pôles-zéros.

La tolérance par défaut est fixée à sqrt(eps), et l'augmentation de cette valeur entraîne des annulations plus agressives, simplifiant potentiellement davantage le modèle.

Annule les paires pôles‑zéros dans les fonctions de transfert ou modèles zéro‑pôle‑gain pour obtenir une réalisation minimale équivalente.

đź’ˇ Exemple

đź•” Historique

Version
đź“„ Description

1.0.0

version initiale

Last updated

Was this helpful?